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The results of numerical solution of the problem on flow of an incompressible viscoplastic fluid in the gap
between two rotating cylinders have been presented. The criterion of formation of the boundaries of stagnant
zones has been developed. A comparison of the results of numerical calculations to the analytical solution has
been made. The time of establishment of stationary flow in the gap has been determined.

We know of the analytical solutions for steady-state flows of viscoplastic materials in units with a simple
geometry. In particular, the problem on one-dimensional stationary flow of a fluid with a linear [1] and nonlinear [2]
viscoplasticity in the gap between two coaxial cylinders has been solved; flow between two concentric rotating
spheres has been considered in [3], whereas flow between two coaxial cones has been the focus of [4]. In investigat-
ing flow of a viscoplastic fluid in cases of complex geometry and to solve nonstationary problems one uses different
numerical models. Among them is, e.g., the double-viscosity model [5]. However, in these models, the equations of
motion of the fluid throughout the region are solved, but the yield stress is disregarded and the zones of solid-state
motion (stagnant zones) are not considered. In the present work, we have numerically analyzed the establishment of
flow of a linear viscoplastic fluid in the gap between two cylinders with allowance for the yield stress. We have
considered the processes of formation and evolution of stagnant zones and have made a comparison to the existing
analytical solution [1].

Formulation of the Problem. In a cylindrical coordinate system, we consider the motion of a viscoplastic
medium in the gap between two cylinders. The external cylinder begins rotation at the instant t = 0 with a constant
angular velocity ω, whereas the internal cylinder is fixed. In the case where the length of the cylinders is much larger
than their radius, only one component of the fluid velocity — Vϕ — is nonzero in the approximation of the axial flow
symmetry. The equation of motion of the viscoplastic medium will be written as
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The governing relations for a linear viscoplastic material have the form [6]
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The only nonzero component ε
.
 in the adopted approximation of long cylinders and axisymmetric flow is ε

.
rϕ =

∂Vϕ ⁄ ∂r − Vϕ ⁄ r.
Equation (1) is true just in the region of viscous flow; the remaining part of the fluid represents a stagnant

zone and moves as a solid body. Adhesion conditions are fulfilled at the solid boundaries. The fluid together with the
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cylinders is at rest at the initial instant of time; at the instant t = 0, the external cylinder acquires a velocity ω with
a jerk.

Numerical Method of Solution. To solve problem (1) and (2) we used a difference scheme with a uniform
grid containing N nodes. The space derivatives were approximated accurate to (∆x)2 according to the central-differ-
ence scheme; the time derivative was determined in advance in time accurate to ∆t. The system of difference equa-
tions was solved by the marching method [7]. The position of stagnant zones at the instant tn+1 was taken from the
previous step.

Conditions (2) imply that for the viscous flow to exist in the vicinity of a certain point of the region, the re-
quirement √(ε

.
, ε

.
) ⁄ 2  > 0 must be met, whereas in the region of solid-state motion we have √(ε
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) ⁄ 2  B 0. The boundary

separating the regions of viscous flow and the stagnant zones is a priori unknown and varies with time until the sta-
tionary state is reached. The difficulty of numerical description of nonstationary flows of a viscoplastic fluid is that the
viscous-flow regions should be determined at each time step using conditions (2), which can be fulfilled in the differ-
ence interpretation of the problem only approximately. In the work, we used the following criterion for determination
of the boundary of a stagnant zone: flow is assumed to be viscous for √(ε
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is fulfilled in the region of solid-state motion. As the analysis has shown, the selection of δ = τ0Rex
2 /(Nν2ρ) yields a

sufficient accuracy when the analytical and numerical dependences are compared.
Discussion of the Results. At the instant of the beginning of motion, the strain rate is nonzero only in the

region immediately adjacent to the external cylinder; the entire remaining fluid is at rest. The stagnant zone adjacent
to the internal cylinder is very rapidly dissipated. After a time, the value of the modulus of the strain-rate tensor at
the points near the external cylinder can be less than δ, which points to the formation of a stagnant zone adherent to
the external cylinder.

Numerical calculations were carried out with the following conditions: radius of the external cylinder Rex =
0.01 m, radius of the internal cylinder Rin = 0.009 m, angular velocity of the external cylinder ω 10−3 to 0.5 sec−1,
and yield stress in the range 10−4 Pa ≤ τ0 ≤ 2⋅10−3 Pa.

As has been indicated above, the "dissipation" of the internal stagnant zone occurs in the initial step of mo-
tion of the external cylinder; somewhat later, the formation of a stagnant zone "adherent" to the external cylinder be-
gins. Then the thickness of this zone increases during a certain period followed by the regime of stationary rotation.
Once the stationary state has been reached, we compute the radius of the stationary stagnant zone (as long as it is
formed) and the moment M of viscous forces acting on the external cylinder (this moment is equal to the rotational
moment necessary for maintaining motion with a prescribed angular velocity). Figure 1a shows the analytical and nu-
merical dependences M = M(ω) for fluids with different values of the yield stress. As the calculations show, no stag-
nant zone is formed for the fluid with τ0 = 10−4 Pa in the range of angular velocities considered, the character of the
dependence M(ω) is linear, and the difference between the analytical and numerical results is no higher than 0.1%.
The angle of inclination of this straight line is used in rheological practice to measure the viscosity η, whereas the
segment intercepted by it on the ordinate axis is used to measure the yield stress. For the fluid with τ0 = 1.5⋅10−3 Pa,

Fig. 1. Applied rotational moment (a) and radius of the stagnant zone (b) vs.
angular rotational velocity of the external cylinder: 1) analytical calculation; 2)
numerical calculation. M, N⋅m; r, m; ω, sec−1.
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the stagnant zone is formed for the angular velocities ω < 0.01 sec−1. This is reflected on the character of the rota-
tional moment plotted as a function of the angular velocity. As is clear from the figure, the numerical curve falls off
from the analytical linear dependence obtained under the assumption that no stagnant zone is formed in the fluid and
extended to the region of angular velocities where this condition is not fulfilled. For the range of angular velocities for
which no stagnant zone is formed, the analytical and numerical dependences are coincident.

Figure 1b shows the numerical and analytical dependences of the value of the stagnant-zone radius on the an-
gular velocity of the external cylinder. As is clear from the figure, the differences in the results are very small, which
points to the applicability of the approximate criterion proposed above to formation of the boundaries of stagnant
zones. Using the data of the numerical calculation, we can determine the times of establishment of flows in the rota-
tional viscosimeter under the physical assumptions made. Figure 2 shows the establishment time as a function of the
rotational velocity of the external cylinder for different values of the yield stress. As is seen in the figure, each plot
represents a curve with a pronounced derivative jump. The left-hand part of the curve corresponds to the conditions
under which the formation of a stagnant zone occurs, whereas the right-hand part corresponds to the absence of this
zone. The stationary state is established over a period shorter than 300 msec, which is much less than the period of
rotation for the angular velocities indicated in the figure. Since the stationary rotation is reached in very small inter-
vals, the establishment of the stationary state in the rotational viscosimeter is mainly determined by the stability of the
mechanical system setting the cylinder in rotation.

Thus, in the present work, we have obtained a finite-difference description of the nonstationary process of es-
tablishment of flow of a viscoplastic fluid and formation of a stagnant zone. By comparing the results of numerical
calculations to the existing analytical solution, we have developed a criterion for formation of the regions of viscous
and solid-state motions. It can be used in numerical solution of problems on nonstationary flows of a viscoplastic fluid
under conditions of a more complex geometry. We have evaluated the time of establishment of stationary flow in the
gap between cylinders.

NOTATION

M, moment of viscous forces acting on the external cylinder, N⋅m; N, number of spatial nodes in the differ-
ence scheme; Rin and Rex, radii of the internal and external cylinders of the viscosimeter, m; t, time; test, time of es-
tablishment of stationary flow between the cylinders, sec; tn, time of the difference scheme, nth step, sec; Vϕ,
azimuthal component of the fluid velocity, m/sec; z, r, ϕ, cylindrical coordinates, m, m, rad; ∆t, time step of the dif-
ference scheme, sec; ∆x, space step of the difference scheme, m; δ, dimensionless numerical criterion for determination
of the boundary motion of a solid body–viscous flow; ε

.
 and ε

.
ij, strain-rate tensor and its components, sec−1; η, coef-

ficient of dynamic viscosity, Pa⋅sec; ν, coefficient of kinematic viscosity, m2/sec; ρ, density of the fluid, kg/m3; τ and
τij, stress tensor and its components, Pa; τ0, yield stress of the fluid, Pa; ω, angular velocity of the external cylinder,
sec−1. Subscripts: ex, external; in, internal; 1 and 2, No. of time step; est, establishment.

Fig. 2. Times of establishment of flow in the viscosimeter vs. angular velocity
and yield stress. test, sec; ω, sec−1.
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